EconPapers    
Economics at your fingertips  
 

Lagrange’s operational approach for the approximate solution of two-dimensional hyperbolic telegraph equation subject to Dirichlet boundary conditions

Vinita Devi, Rahul Kumar Maurya, Somveer Singh and Vineet Kumar Singh

Applied Mathematics and Computation, 2020, vol. 367, issue C

Abstract: The key purpose of this study is to present two schemes based on Lagrange polynomials to deal with the numerical solution of second order two-dimensional telegraph equation (TDTE) with the Dirichlet boundary conditions. First, we convert the main equation into partial integro-differential equations (PIDEs) with the help of initial and boundary conditions. The operational matrices of differentiation and integration are then used to transform the PIDEs into algebraic generalized Sylvester equation. We compared the results obtained by the proposed schemes with Bernoulli matrix method and B-spline differential quadrature method which shows that the proposed schemes are accurate for small number of basis functions.

Keywords: Two-dimensional telegraph equations; Lagrange polynomials; Sylvester equation; Operational matrices (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031930709X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:367:y:2020:i:c:s009630031930709x

DOI: 10.1016/j.amc.2019.124717

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:367:y:2020:i:c:s009630031930709x