Operational framework for recent advances in backtracking search optimisation algorithm: A systematic review and performance evaluation
Bryar A. Hassan and
Tarik A. Rashid
Applied Mathematics and Computation, 2020, vol. 370, issue C
Abstract:
Backtracking search optimisation algorithm (BSA) is a commonly used meta-heuristic optimisation algorithm and was proposed by Civicioglu in 2013. When it was first used, it exhibited its strong potential for solving numerical optimisation problems. Additionally, the experiments conducted in previous studies demonstrated the successful performance of BSA and its non-sensitivity toward the several types of optimisation problems. This success of BSA motivated researchers to work on expanding it, e.g., developing its improved versions or employing it for different applications and problem domains. However, there is a lack of literature review on BSA; therefore, reviewing the aforementioned modifications and applications systematically will aid further development of the algorithm. This paper provides a systematic review and meta-analysis that emphasise on reviewing the related studies and recent developments on BSA. Hence, the objectives of this work are two-fold: (i) First, two frameworks for depicting the main extensions and the uses of BSA are proposed. The first framework is a general framework to depict the main extensions of BSA, whereas the second is an operational framework to present the expansion procedures of BSA to guide the researchers who are working on improving it. (ii) Second, the experiments conducted in this study fairly compare the analytical performance of BSA with four other competitive algorithms: differential evolution (DE), particle swarm optimisation (PSO), artificial bee colony (ABC), and firefly (FF) on 16 different hardness scores of the benchmark functions with different initial control parameters such as problem dimensions and search space. The experimental results indicate that BSA is statistically superior than the aforementioned algorithms in solving different cohorts of numerical optimisation problems such as problems with different levels of hardness score, problem dimensions, and search spaces. This study can act as a systematic and meta-analysis guide for the scholars who are working on improving BSA.
Keywords: Swarm intelligence; Evolutionary optimisation algorithms; Backtracking search optimisation algorithm; Optimisation problems; BSA applications; Performance evaluation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300319309117
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:370:y:2020:i:c:s0096300319309117
DOI: 10.1016/j.amc.2019.124919
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().