Graph-theoretical derivation of brain structural connectivity
G. Giacopelli,
M. Migliore and
D. Tegolo
Applied Mathematics and Computation, 2020, vol. 377, issue C
Abstract:
Brain connectivity at the single neuron level can provide fundamental insights into how information is integrated and propagated within and between brain regions. However, it is almost impossible to adequately study this problem experimentally and, despite intense efforts in the field, no mathematical description has been obtained so far. Here, we present a mathematical framework based on a graph-theoretical approach that, starting from experimental data obtained from a few small subsets of neurons, can quantitatively explain and predict the corresponding full network properties. This model also changes the paradigm with which large-scale model networks can be built, from using probabilistic/empiric connections or limited data, to a process that can algorithmically generate neuronal networks connected as in the real system.
Keywords: Connectome; Neuronal networks; Random graphs (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320301193
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:377:y:2020:i:c:s0096300320301193
DOI: 10.1016/j.amc.2020.125150
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().