On variable and random shape Gaussian interpolations
Sung Nok Chiu,
Leevan Ling and
Michael McCourt
Applied Mathematics and Computation, 2020, vol. 377, issue C
Abstract:
This work focuses on the invertibility of non-constant shape Gaussian asymmetric interpolation matrix, which includes the cases of both variable and random shape parameters. We prove a sufficient condition for that these interpolation matrices are invertible almost surely for the choice of shape parameters. The proof is then extended to the case of anisotropic Gaussian kernels, which is subjected to independent componentwise scalings and rotations. As a corollary of our proof, we propose a parameter free random shape parameters strategy to completely eliminate the need of users’ inputs. By studying numerical accuracy in variable precision computations, we demonstrate that the asymmetric interpolation method is not a method with faster theoretical convergence. We show empirically in double precision, however, that these spatially varying strategies have the ability to outperform constant shape parameters in double precision computations. Various random distributions were numerically examined.
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320301284
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:377:y:2020:i:c:s0096300320301284
DOI: 10.1016/j.amc.2020.125159
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().