EconPapers    
Economics at your fingertips  
 

Discontinuous Galerkin methods of the non-selfadjoint Steklov eigenvalue problem in inverse scattering

Jian Meng and Liquan Mei

Applied Mathematics and Computation, 2020, vol. 381, issue C

Abstract: In this paper, we apply discontinuous Galerkin methods to the non-selfadjoint Steklov eigenvalue problem arising in inverse scattering. The variational formulation of the problem is non-selfadjoint and does not satisfy H1-elliptic condition. By using the spectral approximation theory of compact operators, we prove the spectral approximation and optimal convergence order for the eigenvalues. Finally, some numerical experiments are reported to show that the proposed numerical schemes are efficient for real and complex Steklov eigenvalues.

Keywords: Discontinuous Galerkin method; Polygonal meshes; Non-selfadjoint Steklov eigenvalue problem; Spectral approximation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320302733
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302733

DOI: 10.1016/j.amc.2020.125307

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:381:y:2020:i:c:s0096300320302733