Centrality measures in simplicial complexes: Applications of topological data analysis to network science
Daniel Hernández Serrano and
Darío Sánchez Gómez
Applied Mathematics and Computation, 2020, vol. 382, issue C
Abstract:
Many real networks in social sciences, biological and biomedical sciences or computer science have an inherent structure of simplicial complexes reflecting many-body interactions. Therefore, to analyse topological and dynamical properties of simplicial complex networks centrality measures for simplices need to be proposed. Many of the classical complex networks centralities are based on the degree of a node, so in order to define degree centrality measures for simplices (which would characterise the relevance of a simplicial community in a simplicial network), a different definition of adjacency between simplices is required, since, contrarily to what happens in the vertex case (where there is only upper adjacency), simplices might also have other types of adjacency. The aim of these notes is threefold: first we will use the recently introduced notions of higher order simplicial degrees to propose new degree based centrality measures in simplicial complexes. These theoretical centrality measures, such as the simplicial degree centrality or the eigenvector centrality would allow not only to study the relevance of a simplicial community and the quality of its higher-order connections in a simplicial network, but also they might help to elucidate topological and dynamical properties of simplicial networks; sencond, we define notions of walks and distances in simplicial complexes in order to study connectivity of simplicial networks and to generalise, to the simplicial case, the well known closeness and betweenness centralities (needed for instance to study the relevance of a simplicial community in terms of its ability of transmitting information); third, we propose a new clustering coefficient for simplices in a simplicial network, different from the one knows so far and which generalises the standard graph clustering of a vertex. This measure should be essential to know the density of a simplicial network in terms of its simplicial communities.
Keywords: Complex networks; Simplicial complexes; Clustering coefficient; Topological data analysis; Network science; Statistical mechanics (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320302976
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320302976
DOI: 10.1016/j.amc.2020.125331
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().