A fictitious points one–step MPS–MFS technique
Xiaomin Zhu,
Fangfang Dou,
Andreas Karageorghis and
C.S. Chen
Applied Mathematics and Computation, 2020, vol. 382, issue C
Abstract:
The method of fundamental solutions (MFS) is a simple and efficient numerical technique for solving certain homogenous partial differential equations (PDEs) which can be extended to solving inhomogeneous equations through the method of particular solutions (MPS). In this paper, radial basis functions (RBFs) are considered as the basis functions for the construction of a particular solution of the inhomogeneous equation. A hybrid method coupling these two methods using both fundamental solutions and RBFs as basis functions has been effective for solving a large class of PDEs. In this paper, we propose an improved fictitious points method in which the centres of the RBFs are distributed inside and outside the physical domain of the problem and which considerably improves the performance of the MPS–MFS. We also describe various techniques to deal with the several parameters present in the proposed method, such as the location of the fictitious points, the source location in the MFS, and the estimation of a good value of the RBF shape parameter. Five numerical examples in 2D/3D and for second/fourth–order PDEs are presented and the performance of the proposed method is compared with that of the traditional MPS–MFS.
Keywords: Method of fundamental solutions; Method of particular solutions; Radial basis functions; Shape parameter; Multiquadrics; Fictitious points method (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320302988
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:382:y:2020:i:c:s0096300320302988
DOI: 10.1016/j.amc.2020.125332
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().