Effects of heterogeneous self-protection awareness on resource-epidemic coevolution dynamics
Xiaolong Chen,
Kai Gong,
Ruijie Wang,
Shimin Cai and
Wei Wang
Applied Mathematics and Computation, 2020, vol. 385, issue C
Abstract:
Recent studies have demonstrated that the allocation of individual resources has a significant influence on the dynamics of epidemic spreading. In the real scenario, individuals have a different level of awareness for self-protection when facing the outbreak of an epidemic. To investigate the effects of the heterogeneous self-awareness distribution on the epidemic dynamics, we propose a resource-epidemic coevolution model in this paper. We first study the effects of the heterogeneous distributions of node degree and self-awareness on the epidemic dynamics on artificial networks. Through extensive simulations, we find that the heterogeneity of self-awareness distribution suppresses the outbreak of an epidemic, and the heterogeneity of degree distribution enhances the epidemic spreading. Next, we study how the correlation between node degree and self-awareness affects the epidemic dynamics. The results reveal that when the correlation is positive, the heterogeneity of self-awareness restrains the epidemic spreading. While, when there is a significant negative correlation, strong heterogeneous or strong homogeneous distribution of the self-awareness is not conducive for disease suppression. We find an optimal heterogeneity of self-awareness, at which the disease can be suppressed to the most extent. Further research shows that the epidemic threshold increases monotonously when the correlation changes from most negative to most positive, and a critical value of the correlation coefficient is found. When the coefficient is below the critical value, an optimal heterogeneity of self-awareness exists; otherwise, the epidemic threshold decreases monotonously with the decline of the self-awareness heterogeneity. At last, we verify the results on four typical real-world networks and find that the results on the real-world networks are consistent with those on the artificial network.
Keywords: Coevolution dynamics; Epidemic spreading; Resource allocation; Self-protection awareness; Complex networks (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320303891
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:385:y:2020:i:c:s0096300320303891
DOI: 10.1016/j.amc.2020.125428
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().