EconPapers    
Economics at your fingertips  
 

A test on the location of the tangency portfolio on the set of feasible portfolios

Stanislas Muhinyuza, Taras Bodnar and Mathias Lindholm

Applied Mathematics and Computation, 2020, vol. 386, issue C

Abstract: Due to the problem of parameter uncertainty, specifying the location of the tangency portfolio (TP) on the set of feasible portfolios becomes a challenging task. The set of feasible portfolios is a parabola in the mean-variance space with optimal portfolios lying on its upper part. Using statistical test theory, we want to decide if the tangency portfolio is mean-variance efficient, i.e. if it belongs to the upper limb of the efficient frontier. In the opposite case, the investor would prefer to invest into the risk-free asset or into the global minimum variance portfolio which lies in the vertex of the set of feasible portfolios. Assuming that the portfolio asset returns are independent and multivariate normally distributed, we suggest a test on the location of the tangency portfolio on the set of feasible portfolios. The distribution of the test statistic is derived under both hypotheses, which we use to assess the power of the test and construct a confidence interval. Moreover, out-of-sample performance of the test is evaluated based on real data. The robustness to the assumption of normality is investigated via an extensive simulation study where we show that the new test is robust to the violation of the normality assumption and can also be used for heavy-tailed stochastic models. Moreover, in an empirical study we apply the developed theory to real data. We find that when the sample size is relatively large and a stable period is present on the market, then the mean-variance efficiency of the tangency portfolio can be statistically justified.

Keywords: tangency portfolio; feasible portfolios; test theory; power function; out-of-sample performance (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032030477X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:386:y:2020:i:c:s009630032030477x

DOI: 10.1016/j.amc.2020.125519

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:386:y:2020:i:c:s009630032030477x