EconPapers    
Economics at your fingertips  
 

The multiscale perturbation method for second order elliptic equations

Alsadig Ali, Het Mankad, Felipe Pereira and Fabrício S. Sousa

Applied Mathematics and Computation, 2020, vol. 387, issue C

Abstract: In the numerical solution of elliptic equations, multiscale methods typically involve two steps: the solution of families of local solutions or multiscale basis functions (an embarrassingly parallel task) associated with subdomains of a domain decomposition of the original domain, followed by the solution of a global problem. In the solution of multiphase flow problems approximated by an operator splitting method one has to solve an elliptic equation every time step of a simulation, that would require that all multiscale basis functions be recomputed.

Keywords: Porous media; Domain decomposition; Multiscale basis functions; Robin boundary conditions; Multiphase flows (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630031931015X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:387:y:2020:i:c:s009630031931015x

DOI: 10.1016/j.amc.2019.125023

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:387:y:2020:i:c:s009630031931015x