EconPapers    
Economics at your fingertips  
 

Stability analysis for nonlinear Markov jump neutral stochastic functional differential systems

Lichao Feng, Lei Liu, Zhihui Wu and Qiumei Liu

Applied Mathematics and Computation, 2021, vol. 394, issue C

Abstract: Recently, the asymptotic stability for Markov jump stochastic functional differential systems (SFDSs) was studied, whose stability criteria relied on the intervals lengths of continuous delays. Whereas, so far all the existing references require the rigorous global Lipschitz condition for the delay parts of the drift coefficients and do not consider the challenging factors of exponential decay and neutral issue. Motivated by the aforementioned considerations and the advantages of the degenerate functionals, this paper aims to weaken the global Lipschitz condition for the delay parts of the drift coefficients and investigate the delay-dependent exponential stability and asymptotic boundedness for highly nonlinear Markov jump neutral SFDSs with the method of multiple degenerate functionals. Of course, the delay-independent assertions are as well derived here.

Keywords: Neutral stochastic functional differential systems; Markov jump; Exponential stability; Multiple degenerate functionals (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320307359
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:394:y:2021:i:c:s0096300320307359

DOI: 10.1016/j.amc.2020.125782

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:394:y:2021:i:c:s0096300320307359