Numerical algorithm based on extended barycentric Lagrange interpolant for two dimensional integro-differential equations
Hongyan Liu,
Jin Huang and
Wei Zhang
Applied Mathematics and Computation, 2021, vol. 396, issue C
Abstract:
The barycentric form of Lagrange interpolant is attractive due to its stability, fast convergent rate, high precision and so on. In this paper, we applies an algorithm based on two dimensional extension of barycentric Lagrange interpolant for solving two dimensional integro-differential equations (2D-IDEs) numerically. First, the solution of the 2D-IDEs is replaced by the extended two dimensional barycentric Lagrange interpolant which is constructed by tensor product nodes, the set of differential operators is discretized by the differential matrix of barycentric interpolant, the double integral is approximated by an extended Gauss-type quadrature formula and the boundary conditions are treated by the substitute method. Then the solution of the 2D-IDEs is transformed into the solution of the corresponding system of algebraic equations. The error estimation and convergence analysis are also discussed. Last, several numerical examples are given to demonstrate the merits of the current method.
Keywords: Two dimensional integro-differential equations; Two dimensional barycentric Lagrange interpolant; Differential matrix; Error estimation and convergence analysis (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320308845
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308845
DOI: 10.1016/j.amc.2020.125931
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().