EconPapers    
Economics at your fingertips  
 

Solutions of the matrix inequality AXA≤?A in some partial orders

Hongxing Wang and Xiaoji Liu

Applied Mathematics and Computation, 2021, vol. 396, issue C

Abstract: In this paper, we consider the matrix inequality AXA≤?A in the star, sharp and core partial orders, respectively. We get general solutions of those matrix inequalities and prove D*⊆S* and D#⊆S#, although DO#⊈SO#.

Keywords: Matrix inequality; Partial order; Matrix decomposition; Idempotent matrix; Orthogonal projection; Generalized inverse (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300320308936
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308936

DOI: 10.1016/j.amc.2020.125940

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:396:y:2021:i:c:s0096300320308936