EconPapers    
Economics at your fingertips  
 

Prescribed-time observers of LPV systems: A linear matrix inequality approach

Jiancheng Zhang, Zhenhua Wang, Xudong Zhao, Yan Wang and Ning Xu

Applied Mathematics and Computation, 2021, vol. 398, issue C

Abstract: This paper considers prescribed-time observer (PTO) designs for a class of linear parameter-varying (LPV) systems. Firstly, a full-order prescribed-time observer with time-varying gains is developed. The existence conditions are given in terms of linear matrix inequalities (LMIs). In addition, the reduced-order PTO is also considered in this paper. Moreover, it is shown that the existence conditions under which the full-order PTO exists can also guarantee the existence of a corresponding reduced-order PTO. The advantages of the full-order and the reduced-order PTOs over the existing asymptotic convergence observers are that (1) they can achieve exact estimations in almost any prescribed convergence time regardless of what the system initial values are. (2) the proposed time-varying gain PTOs can avoid the conservatism of the unknown input decoupling conditions brought about by the traditional polytopic LPV observer design methods. Finally, two examples are given to illustrate the effectiveness of the proposed methods.

Keywords: LPV systems; Prescribed-time observer; Full-order observer; Reduced-order observer (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321000308
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000308

DOI: 10.1016/j.amc.2021.125982

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:398:y:2021:i:c:s0096300321000308