EconPapers    
Economics at your fingertips  
 

Interactions of diffusion and nonlocal delay give rise to vegetation patterns in semi-arid environments

Qiang Xue, Chen Liu, Li Li, Gui-Quan Sun and Zhen Wang

Applied Mathematics and Computation, 2021, vol. 399, issue C

Abstract: Vegetation pattern is caused by local instability in phase space, which can reflect the distribution characteristics of vegetation in the studied space. In semi-arid environment, the vegetation roots will not only absorb the water resources near themselves, but also absorb the water resources in the whole study area, that is to say, the absorption of water resources by vegetation roots is a nonlocal process. Meanwhile, the feedback mechanism of soil-water diffusion plays an important role in the process of water absorption by vegetation roots. However, it is not clear that how the feedback mechanism of nonlocal water absorption by vegetation roots and soil-water diffusion affects vegetation pattern. In this paper, we construct a positive feedback vegetation-water model with nonlocal delay. The instability of Turing pattern is analyzed by analytical method, and the conditions of stable pattern occurrence are obtained. At the same time, we use multi-scale analysis method to obtain the amplitude equation of vegetation-water system. We found that the non-local water absorption intensity of vegetation roots and the feedback of soil-water diffusion can cause the phase change of vegetation pattern. The change of nonlocal water absorption intensity will produce mixed vegetation pattern structure. The enhancement of soil-water diffusion feedback intensity will change the vegetation pattern structure: low density cold spot patterns → mixed patterns → high density hot spot patterns. The isolation between vegetation patches will be increased as that nonlocal water absorption intensity is enhanced or the feedback intensity of soil-water diffusion is increased. We also revealed that increasing the feedback intensity of soil water diffusion or nonlocal strength within a certain range is helpful to increase the vegetation density, while excessive feedback intensity or nonlocal strength will induce land desertification.

Keywords: Soil-water diffusion feedback; Nonlocal delay; Multi-scale analysis; Pattern transition; Desertification (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321000862
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:399:y:2021:i:c:s0096300321000862

DOI: 10.1016/j.amc.2021.126038

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:399:y:2021:i:c:s0096300321000862