EconPapers    
Economics at your fingertips  
 

The general position number of Cartesian products involving a factor with small diameter

Jing Tian and Kexiang Xu

Applied Mathematics and Computation, 2021, vol. 403, issue C

Abstract: A vertex subset R of a graph G is called a general position set if any triple V0⊆R is non-geodesic, this is, the three elements of V0 do not lie on the same geodesic in G. The general position number (gp-number for short) gp(G) of G is the number of vertices in a largest general position set in G. In this paper we first determine some formulae for the gp-numbers of Cartesian products involving a complete graph and of the Cartesian product of a complete multipartite graph with a path, respectively. Moreover, it is proved that gp(G□H)≤n(G)+n(H)−2 for any Cartesian product G□H with equality holding if and only if G and H are both generalized complete graphs, that is, a special class of graphs with diameters at most 2. Finally several open problems are proposed on the gp-numbers of Cartesian products.

Keywords: General position set; Cartesian product; General position number (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321002964
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002964

DOI: 10.1016/j.amc.2021.126206

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:403:y:2021:i:c:s0096300321002964