An algorithm for the robust estimation of the COVID-19 pandemic’s population by considering undetected individuals
Rafael Martínez-Guerra and
Juan Pablo Flores-Flores
Applied Mathematics and Computation, 2021, vol. 405, issue C
Abstract:
Due to the current COVID-19 pandemic, much effort has been put on studying the spread of infectious diseases to propose more adequate health politics. The most effective surveillance system consists of doing massive tests. Nonetheless, many countries cannot afford this class of health campaigns due to limited resources. Thus, a transmission model is a viable alternative to study the dynamics of the pandemic. The most used are the Susceptible, Infected and Removed type models (SIR). In this study, we tackle the population estimation problem of the A-SIR model, which takes into account asymptomatic or undetected individuals. By means of an algebraic differential approach, we design a model-free (no copy system) reduced-order estimation algorithm (observer) to determine the different non-measured population groups. We study two types of estimation algorithms: Proportional and Proportional-Integral. Both shown fast convergence speed, as well as a minimal estimation error. Additionally, we introduce random fluctuations in our analysis to represent changes in the external conditions and which result in poor measurements. The numerical results reveal that both model-free estimators are robust despite the presence of these fluctuations. As a point of reference, we apply the classical Luenberger type observer to our estimation problem and compare the results. Finally, we consider real data of infected individuals in Mexico City, reported from February 2020 to March 2021, and estimate the non-measured populations. Our work’s main goal is to proportionate a simple and therefore, an accessible methodology to estimate the behavior of the COVID-19 pandemic from the available data, such that the competent authorities can propose more adequate health politics.
Keywords: COVID-19 pandemic; A-SIR model; Asymptomatic individuals estimation; Model-free estimation algorithm (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321003623
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:405:y:2021:i:c:s0096300321003623
DOI: 10.1016/j.amc.2021.126273
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().