EconPapers    
Economics at your fingertips  
 

A doubly stochastic block Gauss–Seidel algorithm for solving linear equations

Kui Du and Xiao-Hui Sun

Applied Mathematics and Computation, 2021, vol. 408, issue C

Abstract: We propose a doubly stochastic block Gauss–Seidel algorithm for solving linear systems of equations. By varying the row partition parameter and the column partition parameter for the coefficient matrix, we recover the Landweber algorithm, the randomized Kaczmarz algorithm, the randomized coordinate descent algorithm, and the doubly stochastic Gauss–Seidel algorithm. For arbitrary (consistent or inconsistent, full column rank or rank-deficient) linear systems, we prove the exponential convergence of the norm of the expected error via exact formulas. We also prove the exponential convergence of the expected norm of the error for consistent linear systems, and the exponential convergence of the expected norm of the residual for arbitrary linear systems. Numerical experiments for linear systems with synthetic and real-world coefficient matrices are given to demonstrate the efficiency of our algorithm.

Keywords: Randomized Kaczmarz; Randomized coordinate descent; Doubly stochastic Gauss–Seidel; Doubly stochastic block Gauss–Seidel; Exponential convergence (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321004628
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:408:y:2021:i:c:s0096300321004628

DOI: 10.1016/j.amc.2021.126373

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:408:y:2021:i:c:s0096300321004628