EconPapers    
Economics at your fingertips  
 

Non-fragile dissipative state estimation for semi-Markov jump inertial neural networks with reaction-diffusion

Lin Sun, Lei Su and Jing Wang

Applied Mathematics and Computation, 2021, vol. 411, issue C

Abstract: In this paper, the non-fragile dissipative state estimation is addressed for semi-Markov jump inertial neural networks with reaction-diffusion. A semi-Markov jump model is used to describe the stochastic jump parameters in networks. Different from the invariable transition probabilities in the traditional Markov jump systems, the transition probabilities of the semi-Markov jump systems rely on the stochastic sojourn-time. Accordingly, the Weibull distribution taking the place of the exponential distribution in this paper is adopted for the sojourn-time of each mode in the system. Firstly, by utilizing an applicable vector substitution, the second-order differential system could be converted into the first-order one. Afterwards, via constructing a seemly Lyapunov function of the semi-Markov inertial neural networks and adequately taking advantage of the peculiarities of cumulative distribution functions, some sufficient conditions with less conservatism are constructed to assure that the estimation error system is strictly (R1,R2,R3)−ϱ−dissipative stochastically stable. Based on these conditions, mode-dependent estimator gains are designed. Finally, a numerical example is proposed to validate the availability of the provided approach.

Keywords: Inertial neural networks; Semi-Markov jump systems; Dissipative state estimation; Reaction-diffusion terms; Sojourn-time-dependent transition rate (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321004938
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321004938

DOI: 10.1016/j.amc.2021.126404

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321004938