An inverse spectral problem for second-order functional-differential pencils with two delays
S.A. Buterin,
M.A. Malyugina and
C.-T. Shieh
Applied Mathematics and Computation, 2021, vol. 411, issue C
Abstract:
Recently, there appeared a considerable interest in inverse Sturm–Liouville-type problems with constant delay. However, necessary and sufficient conditions for solvability of such problems were obtained only in one very particular situation. Here we address this gap by obtaining necessary and sufficient conditions in the case of functional-differential pencils possessing a more general form along with a nonlinear dependence on the spectral parameter. For this purpose, we develop the so-called transformation operator approach, which allows reducing the inverse problem to a nonlinear vectorial integral equation. In Appendix A, we obtain as a corollary the analogous result for Sturm–Liouville operators with delay. Remarkably, the present paper is the first work dealing with an inverse problem for functional-differential pencils in any form. Besides generality of the pencils under consideration, an important advantage of studying the inverse problem for them is the possibility of recovering both delayed terms, which is impossible for the Sturm–Liouville operators with two delays. The latter, in turn, is illustrated even for different values of these two delays by a counterexample in Appendix B. We also provide a brief survey on the contemporary state of the inverse spectral theory for operators with delay observing recently answered long-term open questions.
Keywords: Functional-differential equation; Pencil; Deviating argument; Constant delay; Inverse spectral problem (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321005646
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005646
DOI: 10.1016/j.amc.2021.126475
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().