EconPapers    
Economics at your fingertips  
 

Option pricing with polynomial chaos expansion stochastic bridge interpolators and signed path dependence

Fabio S. Dias and Gareth W. Peters

Applied Mathematics and Computation, 2021, vol. 411, issue C

Abstract: Recent technological advances have made possible the obtention of vast amounts of market data and strong computing power for advanced models which would not have been practicable for use in real market settings before. In this manuscript we devise a model-free empirical risk-neutral distribution based on Polynomial Chaos Expansions coupled with stochastic bridge interpolators that includes information from the entire set of observable European call option prices under all available strikes and maturities for a given underlying asset in a way that is guaranteed by construction to produce a valid state price distribution function at all times. We also obtain a non parametric model for the risk premium behaviour via an optimisation problem that joins the risk-neutral Polynomial Chaos Expansion result with any general model for the real-world distribution. Finally, we show an empirical application on SP500 Options on Futures using a real-world distribution that assumes the presence of signed path dependence in the returns of the underlying asset.

Keywords: Option pricing; Polynomial chaos expansion; Signed path dependence; Time series momentum; Mixture models (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321005737
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005737

DOI: 10.1016/j.amc.2021.126484

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-04-12
Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321005737