EconPapers    
Economics at your fingertips  
 

Link prediction via controlling the leading eigenvector

Yan-Li Lee, Qiang Dong and Tao Zhou

Applied Mathematics and Computation, 2021, vol. 411, issue C

Abstract: Link prediction is a fundamental challenge in network science. Among various methods, similarity-based algorithms are popular for their simplicity, interpretability, high efficiency and good performance. In this paper, we show that the most elementary local similarity index Common Neighbor (CN) can be linearly decomposed by eigenvectors of the adjacency matrix of the target network, with each eigenvector’s contribution being proportional to the square of the corresponding eigenvalue. As in many real networks, there is a huge gap between the largest eigenvalue and the second largest eigenvalue, the CN index is thus dominated by the leading eigenvector and much useful information contained in other eigenvectors may be overlooked. Accordingly, we propose a parameter-free algorithm that ensures the contributions of the leading eigenvector and the secondary eigenvector the same. Extensive experiments on real networks demonstrate that the prediction performance of the proposed algorithm is remarkably better than well-performed local similarity indices in the literature. A further proposed algorithm that can adjust the contribution of leading eigenvector shows the superiority over state-of-the-art algorithms with tunable parameters for its competitive accuracy and lower computational complexity.

Keywords: Complex networks; Link prediction; Similarity index (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300321006068
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006068

DOI: 10.1016/j.amc.2021.126517

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:411:y:2021:i:c:s0096300321006068