A collocation method to solve the parabolic-type partial integro-differential equations via Pell–Lucas polynomials
Şuayip Yüzbaşı and
Gamze Yıldırım
Applied Mathematics and Computation, 2022, vol. 421, issue C
Abstract:
In this paper, a new collocation method based on the Pell–Lucas polynomials is presented to solve the parabolic-type partial Volterra integro-differential equations. According to the method, it is assumed that the solution of this equation is in the formu2N(x,t)≅∑n=0N∑s=0Nan,sQn,s(x,t),Qn,s(x,t)=Qn(x)Qs(t)which depends on the Pell–Lucas polynomials. Next, the matrix representation of the solution is written. Using this matrix form, the matrix representations of the partial derivatives, the matrix representations of the Volterra integral part and the matrix forms of the conditions are also constituted. All obtained matrix forms are substituted in the equation and its conditions. Using equally spaced collocation points in matrix forms of this equation and initial conditions, the equation is reduced to a system of algebraic equations. The solution of this system gives the coefficients of the assumed solution. Additionally, the error analysis for the method is presented. According to this, an upper bound of the errors is determined. Also, the error estimation is made with the help of the residual function. Moreover, the residual improvement technique is also applied. Then, all these procedures are then supported with the examples. The results obtained from these examples are clearly tabulated and graphed. An important aspect of this study is to compare the obtained results with the present method with other results in the literature.
Keywords: Collocation method; Error analysis; Partial integro-differential equations; Pell–Lucas polynomials (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032200042X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:421:y:2022:i:c:s009630032200042x
DOI: 10.1016/j.amc.2022.126956
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().