A flexible split‐step scheme for solving McKean‐Vlasov stochastic differential equations
Xingyuan Chen and
Gonçalo dos Reis
Applied Mathematics and Computation, 2022, vol. 427, issue C
Abstract:
We present an implicit Split-Step explicit Euler type Method (dubbed SSM) for the simulation of McKean-Vlasov Stochastic Differential Equations (MV-SDEs) with drifts of superlinear growth in space, Lipschitz in measure and non-constant Lipschitz diffusion coefficient. The scheme is designed to leverage the structure induced by the interacting particle approximation system, including parallel implementation and the solvability of the implicit equation. The scheme attains the classical 1/2 root mean square error (rMSE) convergence rate in stepsize and closes the gap left by [1] regarding efficient implicit methods and their convergence rate for this class of McKean-Vlasov SDEs. A sufficient condition for mean-square contractivity of the scheme is presented. Several numerical examples are presented, including a comparative analysis to other known algorithms for this class (Taming and Adaptive time-stepping) across parallel and non-parallel implementations.
Keywords: McKean-Vlasov equations; Split-step methods; Interacting particle systems,; Superlinear growth (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322002545
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:427:y:2022:i:c:s0096300322002545
DOI: 10.1016/j.amc.2022.127180
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().