Reinforcement learning explains various conditional cooperation
Yini Geng,
Yifan Liu,
Yikang Lu,
Chen Shen and
Lei Shi
Applied Mathematics and Computation, 2022, vol. 427, issue C
Abstract:
Recent studies show that different update rules are invariant regarding the evolutionary outcomes for a well-mixed population or homogeneous network. In this paper, we investigate how the Q-learning algorithm, one of the reinforcement learning methods, affects the evolutionary outcomes in square lattice. Especially, we consider the mixed strategy update rule, among which some agents adopt Q-learning method to update their strategies, the proportion of these agents (these agents are denoted as Artificial Intelligence (AI)) is controlled by a simple parameter ρ. The rest of other agents, the proportion is denoted by 1 − ρ, adopt the Fermi function to update their strategies. Through extensive numerical simulations, we found that the mixed strategy-update rule can facilitate cooperation compared with the pure Fermi- function-based update rule. Besides, if the proportion of AI is moderate, cooperators among the whole population exhibit conditional behavior and moody conditional behavior. However, if the whole population adopts the pure Fermi-function-based strategy update rule or the pure Q-learning-based strategy update rule, then cooperators among the whole population exhibit the hump-shaped conditional behavior. Our results provide a new insight to understand the evolution of cooperation from AI's view.
Keywords: Evolutionary games; Q-learning; Conditional cooperation (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322002569
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:427:y:2022:i:c:s0096300322002569
DOI: 10.1016/j.amc.2022.127182
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().