EconPapers    
Economics at your fingertips  
 

Nonlocal interactions between vegetation induce spatial patterning

Juan Liang, Chen Liu, Gui-Quan Sun, Li Li, Lai Zhang, Meiting Hou, Hao Wang and Zhen Wang

Applied Mathematics and Computation, 2022, vol. 428, issue C

Abstract: Vegetation pattern provides useful signals for vegetation protection and can be identified as an early warning of desertification. In some arid or semi-arid regions, vegetation absorbs water through nonlocal interaction of roots. In this study, we present a vegetation model with nonlocal interaction which is characterized by an integral term with a kernel function. Mathematical analysis provides the conditions for the generation of stationary pattern. Numerical simulations exhibit different spatial distributions of vegetation. Densities of vegetation and water show an inverse relationship at same spatial locations due to water transport mechanism. The results reveal that the interaction intensity and the shape of the kernel function can cause the transition of vegetation pattern. Specifically, the vegetation biomass increases as the interaction intensity decreases or as the nonlocal interaction distance increases. We demonstrate that the nonlocal interactions between roots of vegetation is a key mechanism for the formation of vegetation pattern, which provides a theoretical basis for the preservation and restoration of vegetation.

Keywords: Nonlocal interactions; Vegetation pattern; Desertification; Competition (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322001473
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322001473

DOI: 10.1016/j.amc.2022.127061

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:428:y:2022:i:c:s0096300322001473