EconPapers    
Economics at your fingertips  
 

An accurate and stable numerical method for option hedge parameters

Junhyun Cho, Yejin Kim and Sungchul Lee

Applied Mathematics and Computation, 2022, vol. 430, issue C

Abstract: We propose an unconditionally stable numerical algorithm, which uses the Feynman-Kac formula of the Black-Scholes equation to obtain accurate option prices and hedge parameters. We discretize the asset and time using uniform grid points. We approximate the option values by piecewise quadratic polynomials for each time step and integrate them analytically over the log-normal distribution. The piecewise quadratic approximation gives the third-order convergence in the asset direction, and the analytic integration reduces truncation error in the time direction. The estimation errors are propagated backward in time following the convection and diffusion characteristics of the Black-Scholes equation, which assures the unconditional stability of our method. The vectorized code implementation reduces the time complexity. The convergence test shows that our approach outperforms the Crank-Nicolson scheme of the finite difference method in both time and asset directions, and the stability test verifies that our method is stable as the Crank-Nicolson. Furthermore, we show that our algorithm reduces the price errors and hedge parameter errors by more than 50% from the benchmark.

Keywords: Option pricing; Black-Scholes partial differential equation; Feynman-Kac formula; Finite difference method; Unconditionally stable methods; Numerical techniques (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322003502
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003502

DOI: 10.1016/j.amc.2022.127276

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:430:y:2022:i:c:s0096300322003502