EconPapers    
Economics at your fingertips  
 

Best sparse rank-1 approximation to higher-order tensors via a truncated exponential induced regularizer

Xianpeng Mao and Yuning Yang

Applied Mathematics and Computation, 2022, vol. 433, issue C

Abstract: Best sparse tensor rank-1 approximation consists of finding a projection of a given data tensor onto the set of sparse rank-1 tensors, which is important in sparse tensor decomposition and related problems. Existing models used ℓ0 or ℓ1 norms to pursue sparsity. In this work, we first construct a truncated exponential induced regularizer to encourage sparsity, and prove that this regularizer admits a reweighted property. Lower bounds for nonzero entries and upper bounds for the number of nonzero entries of the stationary points of the associated optimization problem are studied. By using the reweighted property of the regularizer, we develop an iteratively reweighted algorithm for solving the problem, and establish its convergence to a stationary point without any assumption. In particular, we show that if the parameter of the regularizer is small enough, then the support of the iterative points will be fixed after finitely many steps. Numerical experiments illustrate the effectiveness of the proposed model and algorithm.

Keywords: Tensor; Sparse; Rank-1 approximation; Reweighted algorithms (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322005070
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322005070

DOI: 10.1016/j.amc.2022.127433

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:433:y:2022:i:c:s0096300322005070