EconPapers    
Economics at your fingertips  
 

A computational approach for a two-parameter singularly perturbed system of partial differential equations with discontinuous coefficients

K. Aarthika, V. Shanthi and Higinio Ramos

Applied Mathematics and Computation, 2022, vol. 434, issue C

Abstract: This work aims at obtaining a numerical approximation to the solution of a two-parameter singularly perturbed convection-diffusion-reaction system of partial differential equations with discontinuous coefficients. This discontinuity, together with small values of the perturbation parameters, causes interior and boundary layers to appear in the solution. To obtain appropriate point-wise accuracy, we have considered a central finite-difference approach in the space variable which is defined on a piecewise uniform Shishkin mesh and an implicit Euler scheme in the temporal variable defined on a uniform mesh. Some computational experiments have been performed, which confirm the theoretical findings.

Keywords: Jump discontinuity; Non-smooth data; Parabolic type; Shishkin mesh; Singularly perturbed problem; Two parameter system (search for similar items in EconPapers)
Date: 2022
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322004830
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322004830

DOI: 10.1016/j.amc.2022.127409

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:434:y:2022:i:c:s0096300322004830