High resolution compact implicit numerical scheme for conservation laws
Peter Frolkovič and
Michal Žeravý
Applied Mathematics and Computation, 2023, vol. 442, issue C
Abstract:
We present a novel implicit scheme for the numerical solution of time-dependent conservation laws. The core idea of the presented method is to exploit and approximate the mixed spatial-temporal derivative of the solution that occurs naturally when deriving some second order accurate schemes in time. Such an approach is introduced in the context of the Lax-Wendroff (or Cauchy-Kowalevski) procedure when the second time derivative is not completely replaced by space derivatives using the PDE, but the mixed derivative is kept. If approximated in a suitable way, the resulting compact implicit scheme produces algebraic systems that have a more convenient structure than the systems derived by fully implicit schemes. We derive a high resolution TVD form of the implicit scheme for some representative hyperbolic equations in the one-dimensional case, including illustrative numerical experiments.
Keywords: Conservation laws; Finite difference method; Implicit method; Compact scheme (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300322007883
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:442:y:2023:i:c:s0096300322007883
DOI: 10.1016/j.amc.2022.127720
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().