Convergence of a exponential tamed method for a general interest rate model
Gabriel Lord and
Mengchao Wang
Applied Mathematics and Computation, 2024, vol. 467, issue C
Abstract:
We prove mean-square convergence of a exponential tamed method, for a generalized Ait-Sahalia interest rate model. The method is based on a Lamperti transform, splitting and applying a tamed numerical method for the nonlinearity. The main difficulty in the analysis is caused by the non-globally Lipschitz drift coefficients of the model. We consider the existence, uniqueness of the solution and boundedness of moments for the transformed SDE before proving bounded moments and inverse moment bounds for the numerical approximation. The exponential tamed method is a hybrid method in the sense that a backstop method is invoked to prevent solutions from overshooting zero and becoming negative. We successfully recover the strong convergence rate of order one for the exponential tamed method. In addition we prove that the probability of ever needing the backstop method to prevent a negative value can be made arbitrarily small. In our numerical experiments we compare to other numerical methods in the literature for realistic parameter values.
Keywords: Ait-Sahalia model; Exponential tamed method; Lamperti transformation; Splitting methods; Strong convergence rate (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300323006720
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:467:y:2024:i:c:s0096300323006720
DOI: 10.1016/j.amc.2023.128503
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().