EconPapers    
Economics at your fingertips  
 

Analytical properties and the box-counting dimension of nonlinear hidden variable recurrent fractal interpolation functions constructed by using Rakotch's fixed point theorem

ChungIl Ro and CholHui Yun

Applied Mathematics and Computation, 2024, vol. 479, issue C

Abstract: Rakotch contraction is a generalization of Banach contraction, which implies that in the case of using Rakotch's fixed point theorem, we can model more objects than using Banach's fixed point theorem. Moreover, hidden variable recurrent fractal interpolation functions (HVRFIFs) with Hölder function factors are more general than the fractal interpolation functions (FIFs), recurrent FIFs and hidden variable FIFs with Lipschitz function factors. We demonstrate that HVRFIFs can be constructed using the Rakotch's fixed point theorem, and then investigate the analytical and geometric properties of those HVRFIFs. Firstly, we construct a nonlinear hidden variable recurrent fractal interpolation functions with Hölder function factors on the basis of a given data set using Rakotch contractions. Next, we analyze the smoothness of the HVRFIFs and show that they are stable on the small perturbations of the given data. Finally, we get the lower and upper bounds for their box-counting dimensions.

Keywords: Recurrent fractal interpolation function; Hidden variable; Rakotch fixed point theorem; Hölder continuous function; Smoothness; Stability; Box-counting dimension (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S009630032400362X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:479:y:2024:i:c:s009630032400362x

DOI: 10.1016/j.amc.2024.128901

Access Statistics for this article

Applied Mathematics and Computation is currently edited by Theodore Simos

More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:apmaco:v:479:y:2024:i:c:s009630032400362x