Analytically pricing volatility options and capped/floored volatility swaps with nonlinear payoffs in discrete observation case under the Merton jump-diffusion model driven by a nonhomogeneous Poisson process
Sanae Rujivan
Applied Mathematics and Computation, 2025, vol. 486, issue C
Abstract:
In this paper, we introduce novel analytical solutions for valuating volatility derivatives, including volatility options and capped/floored volatility swaps, employing discrete sampling within the framework of the Merton jump-diffusion model, which is driven by a nonhomogeneous Poisson process. The absence of a comprehensive understanding of the probability distribution characterizing the realized variance has historically impeded the development of a robust analytical valuation approach for such instruments. Through the application of the cumulative distribution function of the realized variance conditional on Poisson jumps, we have derived explicit expectations for the derivative payoffs articulated as functions of the extremum values of the square root of the realized variance. We delineate precise pricing structures for an array of instruments, encompassing variance and volatility swaps, variance and volatility options, and their respective capped and floored variations, alongside establishing put-call parity and relationships for capped and floored positions. Complementing the theoretical advancements, we substantiate the practical efficacy and precision of our solutions via Monte Carlo simulations, articulated through multiple numerical examples. Conclusively, our analysis extends to the quantification of jump impacts on the fair strike prices of volatility derivatives with nonlinear payoffs, facilitated by our analytic pricing expressions.
Keywords: Volatility swaps; Volatility options; Capped/floored volatility swaps; Discrete sampling; Merton jump-diffusion model; Analytical solutions (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0096300324004909
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:apmaco:v:486:y:2025:i:c:s0096300324004909
DOI: 10.1016/j.amc.2024.129029
Access Statistics for this article
Applied Mathematics and Computation is currently edited by Theodore Simos
More articles in Applied Mathematics and Computation from Elsevier
Bibliographic data for series maintained by Catherine Liu ().