EconPapers    
Economics at your fingertips  
 

Bayesian nonparametric forecasting for INAR models

Luisa Bisaglia and Antonio Canale

Computational Statistics & Data Analysis, 2016, vol. 100, issue C, 70-78

Abstract: A nonparametric Bayesian method for producing coherent predictions of count time series with the nonnegative integer-valued autoregressive process is introduced. Predictions are based on estimates of h-step-ahead predictive mass functions, assuming a nonparametric distribution for the innovation process. That is, the distribution of errors are modeled by means of a Dirichlet process mixture of rounded Gaussians. This class of prior has large support on the space and probability mass functions and can generate almost any kind of count distribution, including over/under-dispersion and multimodality. An efficient Gibbs sampler is developed for posterior computation, and the method is used to analyze a dataset of visits to a web site.

Keywords: Count time series; INAR(1); Dirichlet process mixtures; Forecasting; Gibbs sampling algorithm (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947315000109
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:100:y:2016:i:c:p:70-78

DOI: 10.1016/j.csda.2014.12.011

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:100:y:2016:i:c:p:70-78