EM algorithm in Gaussian copula with missing data
Wei Ding and
Peter X.-K. Song
Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 1-11
Abstract:
Rank-based correlation is widely used to measure dependence between variables when their marginal distributions are skewed. Estimation of such correlation is challenged by both the presence of missing data and the need for adjusting for confounding factors. In this paper, we consider a unified framework of Gaussian copula regression that enables us to estimate either Pearson correlation or rank-based correlation (e.g. Kendall’s tau or Spearman’s rho), depending on the types of marginal distributions. To adjust for confounding covariates, we utilize marginal regression models with univariate location-scale family distributions. We establish the EM algorithm for estimation of both correlation and regression parameters with missing values. For implementation, we propose an effective peeling procedure to carry out iterations required by the EM algorithm. We compare the performance of the EM algorithm method to the traditional multiple imputation approach through simulation studies. For structured types of correlations, such as exchangeable or first-order auto-regressive (AR-1) correlation, the EM algorithm outperforms the multiple imputation approach in terms of both estimation bias and efficiency.
Keywords: Gaussian copula; EM algorithm; Misaligned missing data; Regression (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316000177
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:1-11
DOI: 10.1016/j.csda.2016.01.008
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().