Structure learning in Bayesian Networks using regular vines
Ingrid Hobæk Haff,
Kjersti Aas,
Arnoldo Frigessi and
Virginia Lacal
Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 186-208
Abstract:
Learning the structure of a Bayesian Network from multidimensional data is an important task in many situations, as it allows understanding conditional (in)dependence relations which in turn can be used for prediction. Current methods mostly assume a multivariate normal or a discrete multinomial model. A new greedy learning algorithm for continuous non-Gaussian variables, where marginal distributions can be arbitrary, as well as the dependency structure, is proposed. It exploits the regular vine approximation of the model, which is a tree-based hierarchical construction with pair-copulae as building blocks. It is shown that the networks obtainable with our algorithm belong to a certain subclass of chordal graphs. Chordal graphs representations are often preferred, as they allow very efficient message passing and information propagation in intervention studies. It is illustrated through several examples and real data applications that the possibility of using non-Gaussian margins and a non-linear dependency structure outweighs the restriction to chordal graphs.
Keywords: Bayesian Networks; Regular vines; Pair-copula constructions; Structure learning; Chordal graph; Junction tree (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300457
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:186-208
DOI: 10.1016/j.csda.2016.03.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().