EconPapers    
Economics at your fingertips  
 

l1 regularized multiplicative iterative path algorithm for non-negative generalized linear models

B.N. Mandal and Jun Ma

Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 289-299

Abstract: In regression modeling, often a restriction that regression coefficients are non-negative is faced. The problem of model selection in non-negative generalized linear models (NNGLM) is considered using lasso, where regression coefficients in the linear predictor are subject to non-negative constraints. Thus, non-negatively constrained regression coefficient estimation is sought by maximizing the penalized likelihood (such as the l1-norm penalty). An efficient regularization path algorithm is proposed for generalized linear models with non-negative regression coefficients. The algorithm uses multiplicative updates which are fast and simultaneous. Asymptotic results are also developed for the constrained penalized likelihood estimates. Performance of the proposed algorithm is shown in terms of computational time, accuracy of solutions and accuracy of asymptotic standard deviations.

Keywords: Generalized linear models; Lasso; Elastic net; l1-norm penalty; Regularization path; Non-negativity constraints (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300524
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:289-299

DOI: 10.1016/j.csda.2016.03.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:101:y:2016:i:c:p:289-299