Inference and mixture modeling with the Elliptical Gamma Distribution
Reshad Hosseini,
Suvrit Sra,
Lucas Theis and
Matthias Bethge
Computational Statistics & Data Analysis, 2016, vol. 101, issue C, 29-43
Abstract:
The authors study modeling and inference with the Elliptical Gamma Distribution (EGD). In particular, Maximum likelihood (ML) estimation for EGD scatter matrices is considered, a task for which the authors present new fixed-point algorithms. The algorithms are shown to be efficient and convergent to global optima despite non-convexity. Moreover, they turn out to be much faster than both a well-known iterative algorithm of Kent & Tyler and sophisticated manifold optimization algorithms. Subsequently, the ML algorithms are invoked as subroutines for estimating parameters of a mixture of EGDs. The performance of the methods is illustrated on the task of modeling natural image statistics—the proposed EGD mixture model yields the most parsimonious model among several competing approaches.
Keywords: Maximum likelihood; Elliptical Gamma; Elliptically Contoured Distributions; Conic geometric optimization; Nonconvex global optimization (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300251
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:101:y:2016:i:c:p:29-43
DOI: 10.1016/j.csda.2016.02.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().