Maximum likelihood estimation of triangular and polygonal distributions
Hien D. Nguyen and
Geoffrey J. McLachlan
Computational Statistics & Data Analysis, 2016, vol. 102, issue C, 23-36
Abstract:
Triangular distributions are a well-known class of distributions that are often used as elementary example of a probability model. In the past, enumeration and order statistics-based methods have been suggested for the maximum likelihood (ML) estimation of such distributions. A novel parametrization of triangular distributions is presented. The parametrization allows for the construction of an MM (minorization–maximization) algorithm for the ML estimation of triangular distributions. The algorithm is shown to both monotonically increase the likelihood evaluations, and be globally convergent. Using the parametrization is then applied to construct an MM algorithm for the ML estimation of polygonal distributions. This algorithm is shown to have the same numerical properties as that of the triangular distribution. Numerical simulations are provided to demonstrate the performances of the new algorithms against established enumeration and order statistics-based methods.
Keywords: Triangular distributions; Polygonal distributions; Minorization–maximization algorithms; Mixture models (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300561
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:102:y:2016:i:c:p:23-36
DOI: 10.1016/j.csda.2016.04.003
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().