Reduced rank regression with possibly non-smooth criterion functions: An empirical likelihood approach
Sanying Feng,
Heng Lian and
Fukang Zhu
Computational Statistics & Data Analysis, 2016, vol. 103, issue C, 139-150
Abstract:
Reduced rank regression is considered when the criterion function is possibly non-smooth, which includes the previously un-studied reduced rank quantile regression. The approach used is based on empirical likelihood with a rank constraint. Asymptotic properties of the maximum empirical likelihood estimator (MELE) are established using general results on over-parametrized models. Empirical likelihood leads to more efficient estimators than some existing estimators. Besides, in the framework of empirical likelihood, it is conceptually straightforward to test the rank of the unknown matrix. The proposed methods are illustrated by some simulation studies and real data analyses.
Keywords: Asymptotic normality; Empirical likelihood; Median regression; Quantile regression (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316300913
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:103:y:2016:i:c:p:139-150
DOI: 10.1016/j.csda.2016.04.012
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().