A relative error-based approach for variable selection
Meiling Hao,
Yunyuan Lin and
Xingqiu Zhao
Computational Statistics & Data Analysis, 2016, vol. 103, issue C, 250-262
Abstract:
The accelerated failure time model or the multiplicative regression model is well-suited to analyze data with positive responses. For the multiplicative regression model, the authors investigate an adaptive variable selection method via a relative error-based criterion and Lasso-type penalty with desired theoretical properties and computational convenience. With fixed or diverging number of variables in regression model, the resultant estimator achieves the oracle property. An alternating direction method of multipliers algorithm is proposed for computing the regularization paths effectively. A data-driven procedure based on the Bayesian information criterion is used to choose the tuning parameter. The finite-sample performance of the proposed method is examined via simulation studies. An application is illustrated with an analysis of one period of stock returns in Hong Kong Stock Exchange.
Keywords: Adaptive lasso; ADMM algorithm; Diverging number; Oracle property; Relative error (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316301153
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:103:y:2016:i:c:p:250-262
DOI: 10.1016/j.csda.2016.05.013
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().