EconPapers    
Economics at your fingertips  
 

Sparse seasonal and periodic vector autoregressive modeling

Changryong Baek, Richard A. Davis and Vladas Pipiras

Computational Statistics & Data Analysis, 2017, vol. 106, issue C, 103-126

Abstract: Seasonal and periodic vector autoregressions are two common approaches to modeling vector time series exhibiting cyclical variations. The total number of parameters in these models increases rapidly with the dimension and order of the model, making it difficult to interpret the model and questioning the stability of the parameter estimates. To address these and other issues, two methodologies for sparse modeling are presented in this work: first, based on regularization involving adaptive lasso and, second, extending the approach of Davis et al. (2015) for vector autoregressions based on partial spectral coherences. The methods are shown to work well on simulated data, and to perform well on several examples of real vector time series exhibiting cyclical variations.

Keywords: Seasonal vector autoregressive (SVAR) model; Periodic vector autoregressive (PVAR) model; Sparsity; Partial spectral coherence (PSC); Adaptive lasso; Variable selection (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302134
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:106:y:2017:i:c:p:103-126

DOI: 10.1016/j.csda.2016.09.005

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:106:y:2017:i:c:p:103-126