Composite quantile regression for correlated data
Weihua Zhao,
Heng Lian and
Xinyuan Song
Computational Statistics & Data Analysis, 2017, vol. 109, issue C, 15-33
Abstract:
This study investigates composite quantile regression estimation for longitudinal data on the basis of quadratic inference functions. By incorporating the correlation within subjects, the proposed CQRQIF estimator has the advantages of both robustness and high estimation efficiency for a variety of error distributions. The theoretical properties of the resulting estimators are established. Given that the objective function is non-smooth and non-convex, an estimation procedure based on induced smoothing is developed. It is proved that the smoothed estimator is asymptotically equivalent to the original estimator. The weighted composite quantile regression estimation is also proposed to improve the estimation efficiency further in some situations. Extensive simulations are conducted to compare different estimators, and a real data analysis is used to illustrate their performances.
Keywords: Composite quantile regression; Longitudinal data; Quadratic inference function; Weighted composite quantile regression (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302894
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:109:y:2017:i:c:p:15-33
DOI: 10.1016/j.csda.2016.11.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().