Bayesian variable selection for a semi-competing risks model with three hazard functions
Andrew G. Chapple,
Marina Vannucci,
Peter F. Thall and
Steven Lin
Computational Statistics & Data Analysis, 2017, vol. 112, issue C, 170-185
Abstract:
A variable selection procedure is developed for a semi-competing risks regression model with three hazard functions that uses spike-and-slab priors and stochastic search variable selection algorithms for posterior inference. A rule is devised for choosing the threshold on the marginal posterior probability of variable inclusion based on the Deviance Information Criterion (DIC) that is examined in a simulation study. The method is applied to data from esophageal cancer patients from the MD Anderson Cancer Center, Houston, TX, where the most important covariates are selected in each of the hazards of effusion, death before effusion, and death after effusion. The DIC procedure that is proposed leads to similar selected models regardless of the choices of some of the hyperparameters. The application results show that patients with intensity-modulated radiation therapy have significantly reduced risks of pericardial effusion, pleural effusion, and death before either effusion type.
Keywords: Semi-competing risks; Variable selection; Metropolis–Hastings (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300464
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:112:y:2017:i:c:p:170-185
DOI: 10.1016/j.csda.2017.03.002
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().