EconPapers    
Economics at your fingertips  
 

A quantitative comparison of stochastic mortality models on Italian population data

M.F. Carfora, L. Cutillo and A. Orlando

Computational Statistics & Data Analysis, 2017, vol. 112, issue C, 198-214

Abstract: Mortality models play a basic role in the evaluation of longevity risk by demographers and actuaries. Their performance strongly depends on the different patterns shown by mortality data in different countries. A comprehensive quantitative comparison of the most used methods for forecasting mortality is presented, aimed at evaluating both the goodness of fit and the forecasting performance of these mortality models on Italian demographic data. First, the classical Lee–Carter model is compared to some generalizations that change the order of Singular Value Decomposition approximation and include cohort effects. Then one-way and two-way functional data approaches are considered. Such an analysis extends the current literature on Italian mortality data, on both the number of considered models and their rigorous assessment. Results indicate that generally functional models outperform the classical ones; unfortunately, even if the cohort effect is quite substantial, a suitable procedure for its robust and efficient evaluation is yet to be proposed. To this end, a viable correction for cohort effects is suggested and its performance tested on some of the presented models.

Keywords: Demography; Lee–Carter model; Functional data models; Cohort effect; Goodness of fit; Forecasting (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317300579
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:112:y:2017:i:c:p:198-214

DOI: 10.1016/j.csda.2017.03.012

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:112:y:2017:i:c:p:198-214