Model-based clustering for assessing the prognostic value of imaging biomarkers and mixed type tests
Zheyu Wang,
Krisztian Sebestyen and
Sarah E. Monsell
Computational Statistics & Data Analysis, 2017, vol. 113, issue C, 125-135
Abstract:
A model-based clustering method is proposed to address two research aims in Alzheimer’s disease (AD): to evaluate the accuracy of imaging biomarkers in AD prognosis, and to integrate biomarker information and standard clinical test results into the diagnoses. One challenge in such biomarker studies is that it is often desired or necessary to conduct the evaluation without relying on clinical diagnoses or some other standard references. This is because (1) biomarkers may provide prognostic information long before any standard reference can be acquired; (2) these references are often based on or provide unfair advantage to standard tests. Therefore, they can mask the prognostic value of a useful biomarker, especially when the biomarker is much more accurate than the standard tests. In addition, the biomarkers and existing tests may be of mixed type and vastly different distributions. A model-based clustering method based on finite mixture modeling framework is introduced. The model allows for the inclusion of mixed typed manifest variables with possible differential covariates to evaluate the prognostic value of biomarkers in addition to standard tests without relying on potentially inaccurate reference diagnoses. Maximum likelihood parameter estimation is carried out via the EM algorithm. Accuracy measures and the ROC curves of the biomarkers are derived subsequently. Finally, the method is illustrated with a real example in AD.
Keywords: Finite mixture; Latent variable model; Diagnostic tests; Biomarkers; Differential covariate effect; Imperfect gold standard (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947316302614
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:113:y:2017:i:c:p:125-135
DOI: 10.1016/j.csda.2016.10.026
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().