EconPapers    
Economics at your fingertips  
 

Joint estimation of multiple Gaussian graphical models across unbalanced classes

Liang Shan and Inyoung Kim

Computational Statistics & Data Analysis, 2018, vol. 121, issue C, 89-103

Abstract: The problem of jointly estimating unbalanced multi-class Gaussian graphical models is considered. Most existing methods require equal or similar sample sizes among classes. However, many real applications do not have similar sample sizes. Hence, the joint adaptive graphical lasso, a weighted l1 penalized approach is proposed for unbalanced multi-class problems. The joint adaptive graphical lasso approach combines information across classes so that their common characteristics can be shared during the estimation process. Regularization is also introduced into the adaptive term. Simulation studies show that the new approach performs better than existing methods in terms of false positive rate, accuracy, Mathews correlation coefficient, and false discovery rate. The advantages of the new approach are also demonstrated using a liver cancer data set.

Keywords: Gene network exploration; Joint adaptive graphical lasso; Precision matrix estimation; Unbalanced multi-class (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947317302530
Full text for ScienceDirect subscribers only.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:121:y:2018:i:c:p:89-103

DOI: 10.1016/j.csda.2017.11.009

Access Statistics for this article

Computational Statistics & Data Analysis is currently edited by S.P. Azen

More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:csdana:v:121:y:2018:i:c:p:89-103