Multilevel rejection sampling for approximate Bayesian computation
David J. Warne,
Ruth E. Baker and
Matthew J. Simpson
Computational Statistics & Data Analysis, 2018, vol. 124, issue C, 71-86
Abstract:
Likelihood-free methods, such as approximate Bayesian computation, are powerful tools for practical inference problems with intractable likelihood functions. Markov chain Monte Carlo and sequential Monte Carlo variants of approximate Bayesian computation can be effective techniques for sampling posterior distributions in an approximate Bayesian computation setting. However, without careful consideration of convergence criteria and selection of proposal kernels, such methods can lead to very biased inference or computationally inefficient sampling. In contrast, rejection sampling for approximate Bayesian computation, despite being computationally intensive, results in independent, identically distributed samples from the approximated posterior. An alternative method is proposed for the acceleration of likelihood-free Bayesian inference that applies multilevel Monte Carlo variance reduction techniques directly to rejection sampling. The resulting method retains the accuracy advantages of rejection sampling while significantly improving the computational efficiency.
Keywords: Bayesian inference; Approximate Bayesian computation; Multilevel Monte Carlo; Rejection sampling; Likelihood-free methods (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318300483
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:124:y:2018:i:c:p:71-86
DOI: 10.1016/j.csda.2018.02.009
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().