Copula based generalized additive models for location, scale and shape with non-random sample selection
Małgorzata Wojtyś,
Giampiero Marra and
Rosalba Radice
Computational Statistics & Data Analysis, 2018, vol. 127, issue C, 1-14
Abstract:
Non-random sample selection is a commonplace amongst many empirical studies and it appears when an output variable of interest is available only for a restricted non-random sub-sample of data. An extension of the generalized additive models for location, scale and shape which accounts for non-random sample selection by introducing a selection equation is discussed. The proposed approach allows for potentially any parametric distribution for the outcome variable, any parametric link function for the selection equation, several dependence structures between the (outcome and selection) equations through the use of copulae, and various types of covariate effects. Using a special case of the proposed model, it is shown how the score equations are corrected for the bias deriving from non-random sample selection. Parameter estimation is carried out within a penalized likelihood based framework. The empirical effectiveness of the approach is demonstrated through a simulation study and a case study. The models can be easily employed via the gjrm() function in the R package GJRM.
Keywords: Additive predictor; Copula; Marginal distribution; Non-random sample selection; Penalized regression spline; Simultaneous equation estimation (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301026
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:127:y:2018:i:c:p:1-14
DOI: 10.1016/j.csda.2018.05.001
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().