Addressing overfitting and underfitting in Gaussian model-based clustering
Jeffrey L. Andrews
Computational Statistics & Data Analysis, 2018, vol. 127, issue C, 160-171
Abstract:
The expectation–maximization (EM) algorithm is a common approach for parameter estimation in the context of cluster analysis using finite mixture models. This approach suffers from the well-known issue of convergence to local maxima, but also the less obvious problem of overfitting. These combined, and competing, concerns are illustrated through simulation and then addressed by introducing an algorithm that augments the traditional EM with the nonparametric bootstrap. Further simulations and applications to real data lend support for the usage of this bootstrap augmented EM-style algorithm to avoid both overfitting and local maxima.
Keywords: EM algorithm; Bootstrap; Cluster analysis; Mixture models (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0167947318301245
Full text for ScienceDirect subscribers only.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:csdana:v:127:y:2018:i:c:p:160-171
DOI: 10.1016/j.csda.2018.05.015
Access Statistics for this article
Computational Statistics & Data Analysis is currently edited by S.P. Azen
More articles in Computational Statistics & Data Analysis from Elsevier
Bibliographic data for series maintained by Catherine Liu ().